Суфийские кружения для женщин. Кружение чакр

Оглавление темы "Строение плаценты. Основные функции плаценты. Пупочный канатик и послед.":
1. Строение плаценты. Поверхности плаценты. Микроскопическое строение зрелой ворсины плаценты.
2. Маточно - плацентарное кровообращение.
3. Особенности кровообращения в системе мать - плацента - плод.
4. Основные функции плаценты.

6. Эндокринная функция плаценты. Плацентарный лактоген. Хорионический гонодотропин (ХГ, ХГЧ). Пролактин. Прогестерон.
7. Иммунная система плаценты. Барьерная функция плаценты.
8. Околоплодные воды. Объем околоплодных вод. Количество околоплодных вод. Функции околоплодных вод.
9. Пупочный канатик и послед. Пупочный канатик (пуповина). Варианты прикрепления пуповины к плаценте. Размеры пуповины.

Дыхательная функция.

Газообмен в плаценте осуществляется путем проникновения кислорода к плоду и выведения из его организма СО2 Эти процессы осуществляются по законам простой диффузии. Плацента не обладает способностью к накоплению кислорода и СО2, поэтому их транспорт происходит непрерывно. Обмен газов в плаценте аналогичен газообмену в легких. Значительную роль в выведении СО2 из организма плода играют околоплодные воды и параплацентарный обмен.

Трофическая функция.

Питание плода осуществляется путем транспорта продуктов метаболизма через плаценту.

Белки. Состояние белкового обмена в системе мать-плод обусловлено многими факторами: белковым составом крови матери, состоянием белок-синтезирующей системы плаценты, активностью ферментов, уровнем гормонов и рядом других факторов. Плацента обладает способностью дезами-нировать и переаминировать аминокислоты, синтезировать их из других предшественников. Это обусловливает активный транспорт аминокислот в кровь плода. Содержание аминокислот в крови плода несколько превышает их концентрацию в крови матери. Это указывает на активную роль плаценты в белковом обмене между организмами матери и плода. Из аминокислот плод синтезирует собственные белки, отличные в иммунологическом отношении от белков матери.

Липиды. Транспорт липидов (фосфолипиды, нейтральные жиры и др.) к плоду осуществляется после их предварительного ферментативного расщепления в плаценте. Липиды проникают к плоду в виде триглицеридов и жирных кислот. Липиды в основном локализуются в цитоплазме синцития ворсин хориона, обеспечивая тем самым проницаемость клеточных мембран плаценты.

Глюкоза. Переходит через плаценту согласно механизму облегченной диффузии, поэтому ее концентрация в крови плода может быть выше, чем у матери. Плод также использует для образования глюкозы гликоген печени. Глюкоза является основным питательным веществом для плода. Ей принадлежит также очень важная роль в процессах анаэробного гликолиза.

Вода. Через плаценту для пополнения экстрацеллюлярного пространства и объема околоплодных вод проходит большое количество воды. Вода накапливается в матке, тканях и органах плода, плаценте и амниотической жидкости. При физиологической беременности количество околоплодных вод ежедневно увеличивается на 30-40 мл. Вода необходима для правильного обмена веществ в матке, плаценте и в организме плода. Транспорт воды может осуществляться против градиента концентрации.

Электролиты. Обмен электролитов происходит грансплацентарно и через амниотическую жидкость (параплацентарно). Калий, натрий, хлориды, гидрокарбонаты свободно проникают от матери к плоду и в обратном направлении. Кальций, фосфор, железо и некоторые другие микроэлементы способны депонироваться в плаценте.

Витамины. Весьма важную роль плацента играет в обмене витаминов. Она способна накапливать их и осуществляет регуляцию их поступления к плоду. Витамин А и каротин депонируются в плаценте в значительном количестве. В печени плода каротин превращается в витамин А, Витамины группы В накапливаются в плаценте и затем, связываясь с фосфорной кислотой, переходят к плоду. В плаценте содержится значительное количество витамина С. У плода этот витамин в избыточном количестве накапливается в печени и надпочечниках. Содержание витамина D в плаценте и его транспорт к плоду зависят от содержания витамина в крови матери. Этот витамин регулирует обмен и транспорт кальция в системе мать-плод. Витамин Е, как и витамин К, не переходит через плаценту. Следует иметь в виду, что синтетические препараты витаминов Е и К переходят через плаценту и обнаруживаются в крови пуповины.

Ферменты. Плацента содержит многие ферменты, участвующие в обмене веществ. В ней обнаружены дыхательные ферменты (оксидазы, каталаза дегидрогеназы и др.). В тканях плаценты имеется сукцинатдегидрогеназа которая участвует в процессе переноса водорода при анаэробном гликолизе" Плацента активно синтезирует универсальный источник энергии АТФ.

Из ферментов , регулирующих углеводный обмен, следует указать амилазу, лактазу, карбоксилазу и др. Белковый обмен регулируется с помощью таких ферментов, как НАД- и НАДФдиафоразы. Специфическим для плаценты является фермент - термостабильная щелочная фосфотаза (ТЩФ) . На основании показателей концентрации этого фермента в крови матери можно судить о функции плаценты во время беременности. Другим специфическим ферментом плаценты является окситоциназа. В плаценте содержится ряд биологически активных веществ системы гистамин-гистаминаза, ацетилхолин-холинэстераза и др. Плацента также богата различными факторами свертывания крови и фибринолиза.

Строение и функции плаценты.

Плацента.

Плацентачеловека имеет гемохориальный тип строения - наличие непосредственного контакта материнской крови с хорионом вследствие нарушения целостности децидуальной оболоч­ки матки со вскрытием ее сосудов.

Развитие плаценты. Основной частью плаценты являются ворсины хориона - производные трофобласта. На ранних этапах онтогенеза трофобласт образует протоплазматические выросты, состоящие из клеток цитотрофобласта - первичные вор­сины . Первичные ворсины не имеют сосудов, и поступление питательных веществ и кислорода к организму зародыша из окружающей их материнской крови происходит по законам осмоса и диффузии. К концу 2-й недели беременности в первичные ворсины врастает соединительная ткань и образуются вторичные ворсины. Их основу состав­ляет соединительная ткань, а наружный покров представлен эпителием - трофобласт. Первичные и вторичные ворсины равномерно рас­пределяются по поверхности плодного яйца.

Эпителий вторичных ворсин состоит из двух слоев:

а) цитотрофоб­ласта (слой Лангханса) - состоит из клеток округлой формы со светлой цитоплазмой, ядра клеток крупные.

б) синцития (симпласта) - границы клеток практически неразличимы, цитоплаз­ма темная, зернистая, со щеточной каймой. Ядра относительно небольших размеров, шаровидной или овальной формы.

С 3-й недели развития зародыша начинается очень важный процесс развития плаценты, который заключается в васкуляризации ворсин и пре­вращении их в третичные, содержащие сосуды. Формирование сосудов пла­центы происходит как из ангиобластов зародыша, так и из пупочных сосу­дов, растущих из аллантоиса.

Сосуды аллантоиса врастают во вторичные ворсины, в результате чего каждая вторичная ворсина получает васкуляризацию. Установление аллантоидного кровообращения обеспечивает интенсивный обмен между организмами плода и матери.

На ранних стадиях внутриутробного развития ворсины хориона равномерно покрывают всю поверхность плодного яйца. Однако начиная со 2-го месяца онтогенеза на большей поверхности плодного яйца ворсины атро­фируются, в то же время развиваются ворсины, обращенные к базальной части децидуапьной оболочки. Так формируются гладкий и вет­вистый хорион.

При сроке беременности 5-6 нед толщи­на синцитиотрофобласта превосходит толщину слоя Лангханса, а, начиная со срока 9-10 нед синцитиотрофобласт постепенно истончается и количе­ство ядер в нем увеличивается. На свободной поверхности синцитиотрофо­бласта, обращенной к межворсинчатому пространству, становятся хорошо заметными длинные тонкие цитоплазматические выросты (микроворсины), которые значительно увеличивают резорбционную поверхность плаценты. В начале II триместра беременности происходит интенсивное превращение цитотрофобласта в синцитий, в результате чего на многих участках слой Лангханса полностью исчезает.

В конце беременности в плаценте начинаются инволюционно-дистро­фические процессы, которые иногда называют старением плаценты. Из крови, циркулирующей в межворсинчатом пространстве, начинает выпадать фибрин (фибриноид), который откладывается преимущественно на поверх­ности ворсин. Выпадение этого вещества способствует процессам микротромбообразования и гибели отдельных участков эпителиального покрова ворсин. Ворсины, покрытые фибриноидом, в значительной степени выклю­чаются из активного обмена между организмами матери и плода.

Происходит выраженное истончение плацентарной мембраны. Строма ворсин становится более волокнистой и гомогенной. Наблюдается некоторое утолщение эндотелия капилляров В участках дистрофии нередко откладываются соли извести. Все эти изменения отражаются на функциях плаценты.

Однако наряду с процессами инволюции происходит увеличение молодых ворсин, которые в значительной мере компенсируют функцию утраченных, но они лишь частично улучшают функцию плаценты в целом. В результате этого в конце беременности наблюдается снижение функции плаценты.

Строение зрелой плаценты. Макроскопически зрелая плацента очень напоминает толстую мягкую лепешку. Масса плаценты составляет 500-600 г. диаметр 15-18 см, толщина 2-3 см. Плацента имеет две поверхности:

а) материнская - обращена к стенке матки - плаценты имеет серовато-красный цвет и пред­ставляет собой остатки базальной части децидуальной оболочки.

б) плодовая – обращена в сторону плода - покрыта блестящей амниотической оболоч­кой, под которой к хориону подходят сосуды, идущие от места прикрепле­ния пуповины к периферии плаценты.

Основная часть плодовой плаценты представлена многочисленными ворсинами хориона, которые объединяются в дольчатые образования - котиледоны, или дольки – основная структурно-функциональная единица сформировавшейся плаценты. Их число достигает 15-20. Дольки плаценты образуются в результате разделения ворсин хорио­на перегородками (септами), исходящими из базальной пластинки. К каж­дой из таких долек подходит свой крупный сосуд.

Микроскопическое строение зрелой ворсины. Различают два вида ворсин :

а) свободные - погружены в межворсинчатое простран­ство децидуальной оболочки и "плавают" в материнской крови.

б) закрепляющие (якорные) - прикреплены к базальной децидуальной оболочке и обеспечивают фиксацию плаценты к стенке матки. В третьем периоде родов связь таких ворсин с децидуальной оболочкой нарушается и под влиянием маточных сокращений плацента отделяется от стенки матки.

При микроскопическом изучении строения зрелой ворсины дифференцируются следующие образования:

Синцитий, не имеющий четких клеточных границ;

Слой (или остатки) цитотрофобласта;

Строму ворсины;

Эндотелий капилляра, в просвете которого хорошо заметны элементы крови плода.

Маточно-плацентарное кровообращение. Кро­воток и матери и плода разделены между собой следую­щими структурными единицами ворсин хориона:

Эпителиальный слой (син­цитий, цитотрофобласт);

Строма ворсин;

Эндотелий капилляров.

Кровоток в матке осущест­вляется с помощью 150-200 ма­теринских спиральных артерий, которые открываются в обшир­ное межворсинчатое простран­ство. Стен­ки артерий лишены мышечного слоя, а устья не способны сокращаться и расширяться. Они обла­дают низким сосудистым сопротивлением току крови. Все эти особенности гемодинамики имеют большое значение в осуществлении бесперебойного транспорта артериальной крови от орга­низма матери к плоду. Излившаяся артериальная кровь омывает ворсины хориона, отдавая при этом в кровь плода кислород, необходимые питатель­ные вещества, многие гормоны, витамины, электролиты и другие химичес­кие вещества, а также микроэлементы, необходимые плоду для его правильного роста и развития. Кровь, содержащая СО 2 и другие продукты метаболизма плода, изливается в венозные отверстия материнских вен, общее число которых превышает 180. Кровоток в межворсинчатом пространстве в конце беременности доста­точно интенсивен и в среднем составляет 500-700 мл крови в минуту.

Особенности кровообращения в системе мать-плацента-плод. Артери­альные сосуды плаценты после отхождения от пуповины делятся радиально в соответствии с числом долек плаценты (котиледонов). В результате дальнейшего разветвления артериальных сосудов в конечных ворсинах образуется сеть капилляров, кровь из которых собирается в венозную систему, Вены, в которых течет артериальная кровь, собираются в более крупные венозные стволы и впадают в вену пуповины.

Кровообращение в плаценте поддерживается сердечными сокращения­ми матери и плода. Важная роль в стабильности этого кровообращения также принадлежит механизмам саморегуляции маточно-плацентарного кровообращения.

Основные функции плаценты. Плацента выполняет следующие основные функции: дыхательную, выделительную, трофическую, защитную и инкреторную. Она выполняет также функции антигенобраэования и им­мунной зашиты. Большую роль в осуществлении этих функций играют плодные оболочки и околоплодные воды

1. Дыхательная функция. Газообмен в плаценте осуществляется путем проникновения кислорода к плоду и выведения из его организма СО 2 . Эти процессы осуществляются по законам простой диффузии. Плацента не обладает способностью к накоплению кислорода и СО 2 , поэтому их транспорт происходит непрерывно. Обмен газов в плаценте аналогичен газооб­мену в легких. Значительную роль в выведении СО 2 из организма плода играют околоплодные воды и параплацентарный обмен.

2. Трофическая функция. Питание плода осуществляется путем транспорта продуктов метаболизма через плаценту.

Белки. Состояние белкового обмена в системе мать-плод обусловлено белковым составом крови матери, состоянием белок-синтезирующей системы плаценты, активностью ферментов, уровнем гор­монов и рядом других факторов. Содержание аминокислот в крови плода несколько превышает их концентрацию в крови матери.

Липиды. Транспорт липидов (фосфолипиды, нейтральные жиры и др.) к плоду осуществляется после их предварительного ферментативного рас­щепления в плаценте. Липиды проникают к плоду в виде триглицеридов и жирных кислот.

Глюкоза. Переходит через плаценту согласно механизму облегченной диффузии, поэтому ее концентрация в крови плода может быть выше, чем у матери. Плод также использует для образования глюкозы гликоген печени. Глюкоза является основным питательным веществом для плода. Ей принад­лежит также очень важная роль в процессах анаэробного гликолиза.

Вода. Через плаценту для пополнения экстрацеллюлярного пространства и объема околоплодных вод проходит большое количество воды. Вода на­капливается в матке, тканях и органах плода, плаценте и амниоткческой жидкости. При физиологической беременности количество околоплодных вод ежедневно увеличивается на 30-40 мл. Вода необходима для правиль­ного обмена веществ в матке, плаценте и в организме плода. Транспорт воды может осуществляться против градиента концентрации.

Электролиты . Обмен электролитов происходит трансплацентарно и через амниотическую жидкость (параплацентарно). Калий, натрий, хлориды, гидрокарбонаты свободно проникают от матери к плоду и в обратном направлении. Кальций, фосфор, железо и некоторые другие микроэлементы способны депонироваться в плаценте.

Витамины. Витамин А и каротин депонируются в плаценте в значительном количестве. В печени плода каротин превращается в витамин А. Витамины группы В накапливаются в плаценте и затем, связываясь с фосфорной кислотой, переходят к плоду. В плаценте содержится значительное количество витамина С. У плода этот витамин в избыточном количестве накапли­вается в печени и надпочечниках. Содержание витамина D в плаценте и его транспорт к плоду зависят от содержания витамина в крови матери. Этот витамин регулирует обмен и транспорт кальция в системе мать-плод. Ви­тамин Е, как и витамин К, не переходит через плаценту.

3. Эндокринная функция. При физиологическом течении беремен­ности существует тесная связь между гормональным статусом материнского организма, плацентой и плодом. Плацента обладает избирательной способ­ностью переносить материнские гормоны. Гормоны, имеющие сложную белковую структуру (соматотропин, тиреотропный гормон, АКТГ и др.), практически не переходят через плаценту. Проникновению окситоцина через плацентарный барьер препятствует высокая активность в плаценте фермента окситоциназы. Стероидные гормоны обладают способнос­тью переходить через плаценту (эстрогены, прогестерон, андрогены, глюко-кортикоиды). Тиреоидные гормоны матери также проникают через плацен­ту, однако трансплацентарный переход тироксина осуществляется более медленно, чем трийодтиронина.

Наряду с функцией по трансформации материнских гормонов плацента сама превращается во время беременности в мощный эндокринный орган, который обеспечивает наличие оптимального гормонального гомеостаза как у матери, так и у плода.

Одним из важнейших плацентарных гормонов белковой природы явля­ется плацентарный лактоген (ПЛ). По своей структуре ПЛ близок к гормону роста аденогипофиза. Гормон практически целиком поступает в материн­ский кровоток и принимает активное участие в углеводном и липидном обмене. В крови беременной ПЛ начинает обнаруживаться очень рано - с 5-й недели, и его концентрация прогрессивно возрастает, достигая макси­мума в конце гестации. ПЛ практически не проникает к плоду, а в амниотической жидкости содержится в низких концентрациях. Этому гормону уделяется важная роль в диагностике плацентарной недостаточности.

Другим гормоном плаценты белкового происхождения является хорионическии гонадотропин (XГ). ХГ в крови матери обнаруживают на ранних стадиях беременности, максимальные концентрации этого гормона отмечаются в 8-10 нед беременности. К плоду переходит в ограниченном количестве. На определении ХГ в крови и моче основаны гормональные тесты на беременность: иммунологическая реакция, реакция Ашгейма - Цондека, гормональная реакция на самцах лягушек.

Плацента наряду с гипофизом матери и плода продуцирует пролактин. Физиологическая роль плацентарного пролактина сходна с таковой ПЛ гипофиза.

Эстрогены (эстрадиол, эстрон, эстриол) продуцируются плацентой в возрастающем количестве, при этом наиболее высокие концентрации этих гормонов наблюдаются перед родами. Около 90% эстрогенов плаценты представлены эстриолом.Его содержание служит отражением не только функции плаценты, но и состояния плода.

Важное место в эндокринной функции плаценты принадлежит синтезу прогестерона . Продукция этого гормона начинается с ранних сроков беременности, однако в течение первых 3 мес основная роль в синтезе прогестерона принадлежит желтому телу и лишь затем эту роль берет на себя плацента. Из плаценты прогесте­рон поступает в основном в кровоток матери и в значительно меньшей сте­пени в кровоток плода.

В плаценте вырабатывается глюкокортикоидный стероид кортизол. Этот гормон также продуцируется в надпочечниках плода, поэтому кон­центрация кортизола в крови матери отражает состояние как плода, так и плаценты (фетоплацентарной системы).

4. Барьерная функция плаценты. Понятие "плацентарный барьер" включает в себя следующие гистологические образования: синцитиотрофобласт, цитотрофобласт, слой мезенхимальных клеток (строма ворсин) и эн­дотелий плодового капилляра. Характеризуется переходом различных веществ в двух направлениях. Проницаемость плаценты непостоянна. При физиологической беремен­ности проницаемость плацентарного барьера прогрессивно увеличивается вплоть до 32-35-й недели беременности, а затем несколько снижается. Это обусловлено особенностями строения плаценты в различные сроки беремен­ности, а также потребностями плода в тех или иных химических соединениях. Ограниченные барьерные функции плаценты в отношении химических веществ, случайно попавших в организм матери, проявляются в том, что через плаценту сравнительно легко переходят токсичные продукты химичес­кого производства, большинство лекарственных препаратов, никотин, алко­голь, пестициды, возбудители инфекций и т.д. Барьерные функции плаценты наиболее полно проявляются только в физиологических условиях, т.е. при неосложненном течении беременности. Под воздействием патогенных факторов (микроорганизмы и их токсины, сенсибилизация организма матери, действие алкоголя, никотина, наркоти­ков) барьерная функция плаценты нарушается, и она становится проницае­мой даже для таких веществ, которые в обычных физиологических условиях через нее переходят в ограниченном количестве.

Плацента выполняет следующие основные функции: дыхательную, выделительную, трофическую, защитную и инкреторную. Она выполняет также функции антигенобразования и иммунной защиты. Большую роль в осуществлении этих функций играют плодные оболочки и околоплодные воды.

Переход через плаценту химических соединений определяется различными механизмами: ультрафильтрацией, простой и облегченной диффузией, активным транспортом, пиноцитозом, трансформацией веществ в ворсинах хориона. Большое значение имеют также растворимость химических соединений в липидах и степень ионизации их молекул.

Процессы ультрафильтрации зависят от величины молекулярной массы химического вещества. Этот механизм имеет место в тех случаях, когда молекулярная масса не превышает 100. При более высокой молекулярной массе наблюдается затрудненный трансплацентарный переход, а при молекулярной массе 1000 и более химические соединения практически не проходят через плаценту, поэтому их переход от матери к плоду осуществяется с помощью других механизмов.

Процесс диффузии заключается в переходе веществ из области большей концентрации в область меньшей концентрации. Такой механизм характерен для перехода кислорода от организма матери к плоду и СО2 от плода в организм матери. Облегченная диффузия отличается от простой тем, что равновесие концентраций химических соединений по обе стороны плацентарной мембраны достигается значительно быстрее, чем этого можно было ожидать на основании законов простой диффузии. Такой механизм доказан для перехода от матери к плоду глюкозы и некоторых других химических веществ.

Пиноцитоз представляет собой такой тип перехода вещества через плаценту, когда ворсины хориона активно поглощают капельки материнской плазмы вместе с содержащимися в них теми или иными соединениями.

Наряду с этими механизмами трансплацентарного обмена большое значение для перехода химических веществ от организма матери к плоду и в обратном направлении имеет растворимость в липидах и степень ионизации молекул химических агентов. Плацента функционирует как липидный барьер. Это означает, что химические вещества, хорошо растворимые в липидах, более активно переходят через плаценту, чем плохо растворимые. Роль ионизации молекул химического соединения заключается в том, что недиссоциированые и неионизированные вещества переходят через плаценту более быстро.

Величина обменной поверхности плаценты и толщина плацентарной мембраны также имеют существенное значение для процессов обмена между организмами матери и плода.

Несмотря на явления так называемого физиологического старения, проницаемость плаценты прогрессивно возрастает вплоть до 32-35-й недели беременности. Это в основном обусловлено увеличением числа вновь образованных ворсин, а также прогрессирующим истончением самой плацентарной мембраны (с 33-38 мкм в начале беременности до 3-6 мкм в конце ее).

Степень перехода химических соединений от организма матери к плоду зависит не только от особенностей проницаемости плаценты. Большая роль в этом процессе принадлежит и организму самого плода, его способности избирательно накапливать именно те агенты, которые в данный момент особенно необходимы ему для роста и развития. Так, в период интенсивного гемопоэза возрастает потребность плода в железе, которое необходимо для синтеза гемоглобина. Если в организме матери содержится недостаточное количество железа, то у нее возникает анемия. При интенсивной оссификации костей скелета увеличивается потребность плода в кальции и фосфоре, что вызывает усиленный трансплацентарный переход их солей. В этот период беременности у матери особенно ярко выражены процессы обеднения ее организма данными химическими соединениями.

Дыхательная функция плаценты

Газообмен в плаценте осуществляется путем проникновения кислорода к плоду и выведения из его организма СО2. Эти процессы осуществляются по законам простой диффузии. Плацента не обладает способностью к накоплению кислорода и CO2, поэтому их транспорт происходит непрерывно. Обмен газов в плаценте аналогичен газообмену в легких. Значительную роль в выведении СО2 из организма плода играют околоплодные воды и параплацентарный обмен.

Трофическая функция плаценты

Питание плода осуществляется путем транспорта продуктов метаболизма через плаценту.

Белки. Состояние белкового обмена в системе мать-плод обусловлено многими факторами: белковым составом крови матери, состоянием белок-синтезирующей системы плаценты, активностью ферментов, уровнем гормонов и рядом других факторов. Плацента обладает способностью дезами-нировать и переаминировать аминокислоты, синтезировать их из других предшественников. Это обусловливает активный транспорт аминокислот в кровь плода. Содержание аминокислот в крови плода несколько превышает их концентрацию в крови матери. Это указывает на активную роль плаценты в белковом обмене между организмами матери и плода. Из аминокислот плод синтезирует собственные белки, отличные в иммунологическом отношении от белков матери.

Липиды. Транспорт липидов (фосфолипиды, нейтральные жиры и др.) к плоду осуществляется после их предварительного ферментативного расщепления в плаценте. Липиды проникают к плоду в виде триглицеридов и жирных кислот. Липиды в основном локализуются в цитоплазме синцития ворсин хориона, обеспечивая тем самым проницаемость клеточных мембран плаценты.

Глюкоза. Переходит через плаценту согласно механизму облегченной диффузии, поэтому ее концентрация в крови плода может быть выше, чем у матери. Плод также использует для образования глюкозы гликоген печени. Глюкоза является основным питательным веществом для плода. Ей принадлежит также очень важная роль в процессах анаэробного гликолиза.

Вода. Через плаценту для пополнения экстрацеллюлярного пространства и объема околоплодных вод проходит большое количество воды. Вода накапливается в матке, тканях и органах плода, плаценте и амниотической жидкости. При физиологической беременности количество околоплодных вод ежедневно увеличивается на 30-40 мл. Вода необходима для правильного обмена веществ в матке, плаценте и в организме плода. Транспорт воды может осуществляться против градиента концентрации.

Электролиты. Обмен электролитов происходит трансплацентарно и через амниотическую жидкость (параплацентарно). Калий, натрий, хлориды, гидрокарбонаты свободно проникают от матери к плоду и в обратном направлении. Кальций, фосфор, железо и некоторые другие микроэлементы способны депонироваться в плаценте.

Витамины. Весьма важную роль плацента играет в обмене витаминов. Она способна накапливать их и осуществляет регуляцию их поступления к плоду. Витамин А и каротин депонируются в плаценте в значительном количестве. В печени плода каротин превращается в витамин А. Витамины группы В накапливаются в плаценте и затем, связываясь с фосфорной кислотой, переходят к плоду. В плаценте содержится значительное количество витамина С. У плода этот витамин в избыточном количестве накапливается в печени и надпочечниках. Содержание витамина D в плаценте и его транспорт к плоду зависят от содержания витамина в крови матери. Этот витамин регулирует обмен и транспорт кальция в системе мать-плод. Витамин Е, как и витамин К, не переходит через плаценту. Следует иметь в виду, что синтетические препараты витаминов Е и К переходят через плаценту и обнаруживаются в крови пуповины.

Ферменты. Плацента содержит многие ферменты, участвующие в обмене веществ. В ней обнаружены дыхательные ферменты (оксидазы, каталаза, дегидрогеназы и др.). В тканях плаценты имеется сукцинатдегидрогеназа, которая участвует в процессе переноса водорода при анаэробном гликолизе. Плацента активно синтезирует универсальный источник энергии АТФ.

Из ферментов, регулирующих углеводный обмен, следует указать амилазу, лактазу, карбоксилазу и др. Белковый обмен регулируется с помощью таких ферментов, как НАД- и НАДФдиафоразы. Специфическим для плаценты является фермент - термостабильная щелочная фосфотаза (ТЩФ). На основании показателей концентрации этого фермента в крови матери можно судить о функции плаценты во время беременности. Другим специфическим ферментом плаценты является окситоциназа. В плаценте содержится ряд биологически активных веществ системы гистамин-гистаминаза, ацетилхолин-холинэстераза и др. Плацента также богата различными факторами свертывания крови и фибринолиза.

Эндокринная функция плаценты

При физиологическом течении беременности существует тесная связь между гормональным статусом материнского организма, плацентой и плодом. Плацента обладает избирательной способностью переносить материнские гормоны. Так, гормоны, имеющие сложную белковую структуру (соматотропин, тиреотропный гормон, АКТГ и др.), практически не переходят через плаценту. Проникновению окситоцина через плацентарный барьер препятствует высокая активность в плаценте фермента окситоциназы. Переходу инсулина от организма матери к плоду, по-видимому, препятствует его высокая молекулярная масса.

В противоположность этому стероидные гормоны обладают способностью переходить через плаценту (эстрогены, прогестерон, андрогены, глюко-кортикоиды). Тиреоидные гормоны матери также проникают через плаценту, однако трансплацентарный переход тироксина осуществляется более медленно, чем трийодтиронина.

Наряду с функцией по трансформации материнских гормонов плацента сама превращается во время беременности в мощный эндокринный орган, который обеспечивает наличие оптимального гормонального гомеостаза как у матери, так и у плода.

Одним из важнейших плацентарных гормонов белковой природы является плацентарный лактоген (ПЛ). По своей структуре ПЛ близок к гормону роста аденогипофиза. Гормон практически целиком поступает в материнский кровоток и принимает активное участие в углеводном и липидном обмене. В крови беременной ПЛ начинает обнаруживаться очень рано - с 5-й недели, и его концентрация прогрессивно возрастает, достигая максимума в конце гестации (рис. 3.11, а). ПЛ практически не проникает к плоду, а в амниотической жидкости содержится в низких концентрациях. Этому гормону уделяется важная роль в диагностике плацентарной недостаточности.

Другим гормоном плаценты белкового происхождения является хорионический гонадотропин (ХГ). По своему строению и биологическому действию ХГ очень сходен с лютеинизирующим гормоном аденогипофиза. При диссоциации ХГ образуются две субъединицы (а и р). Наиболее точно функцию плаценты отражает р-ХГ. ХГ в крови матери обнаруживают на ранних стадиях беременности, максимальные концентрации этого гормона отмечаются в 8-10 нед беременности. В ранние сроки беременности ХГ стимулирует стероидогенез в желтом теле яичника, во второй половине - синтез эстрогенов в плаценте. К плоду ХГ переходит в ограниченном количестве. Полагают, что ХГ участвует в механизмах половой дифференцировки плода. На определении ХГ в крови и моче основаны гормональные тесты на беременность: иммунологическая реакция, реакция Ашгейма - Цондека, гормональная реакция на самцах лягушек и др.

Плацента наряду с гипофизом матери и плода продуцирует пролактин. Физиологическая роль плацентарного пролактина сходна с таковой ПЛ гипофиза.

Кроме белковых гормонов, плацента синтезирует половые стероидные гормоны (эстрогены, прогестерон, кортизол).

Эстрогены (эстрадиол, эстрон, эстриол) продуцируются плацентой в возрастающем количестве, при этом наиболее высокие концентрации этих гормонов наблюдаются перед родами. Около 90% эстрогенов плаценты представлены эстриолом. Его содержание служит отражением не только функции плаценты, но и состояния плода. Дело в том, что эстриол в плаценте образуется из андрогенов надпочечников плода, поэтому концентрация эстриола в крови матери отражает состояние как плода, так и плаценты. Эти особенности продукции эстриола легли в основу эндокринной теории о фетоплацентарной системе.

Прогрессирующим увеличением концентрации во время беременности характеризуется также эстрадиол. Многие авторы считают, что именно этому гормону принадлежит решающее значение в подготовке организма беременной к родам.

Важное место в эндокринной функции плаценты принадлежит синтезу прогестерона. Продукция этого гормона начинается с ранних сроков беременности, однако в течение первых 3 мес. основная роль в синтезе прогестерона принадлежит желтому телу и лишь затем эту роль берет на себя плацента. Из плаценты прогестерон поступает в основном в кровоток матери и в значительно меньшей степени в кровоток плода.

В плаценте вырабатывается глюкокортикоидный стероид кортизол. Этот гормон также продуцируется в надпочечниках плода, поэтому концентрация кортизола в крови матери отражает состояние как плода, так и плаценты (фетоплацентарной системы).

До настоящего времени открытым остается вопрос о продукции АКТГ и ТТГ плацентой.

Иммунная система плаценты. Плацента представляет собой своеобразный иммунный барьер, разделяющий два генетически чужеродных организма (мать и плод), поэтому при физиологически протекающей беременности иммунного конфликта между организмами матери и плода не возникает. Отсутствие иммунологического конфликта между организмами матери и плода обусловлено следующими механизмами:

  • отсутствие или незрелость антигенных свойств плода;
  • наличие иммунного барьера между матерью и плодом (плацента);
  • иммунологические особенности организма матери во время беременности.

Барьерная функция плаценты

Понятие "плацентарный барьер" включает в себя следующие гистологические образования: синцитиотрофобласт, цитотрофобласт, слой мезенхимальных клеток (строма ворсин) и эндотелий плодового капилляра. Плацентарный барьер в какой-то степени можно уподобить гематоэнцефалическому барьеру, который регулирует проникновение различных веществ из крови в спинномозговую жидкость. Однако в отличие от гематоэнцефалического барьера, избирательная проницаемость которого характеризуется переходом различных веществ только в одном направлении (кровь - цереброспинальная жидкость), плацентарный барьер регулирует переход веществ и в обратном направлении, т.е. от плода к матери.

Трансплацентарный переход веществ, постоянно находящихся в крови матери и попавших в нее случайно, подчиняется разным законам. Переход от матери к плоду химических соединений, постоянно присутствующих в крови матери (кислород, белки, липиды, углеводы, витамины, микроэлементы и др.), регулируется достаточно точными механизмами, в результате чего одни вещества содержатся в крови матери в более высоких концентрациях, чем в крови плода, и наоборот. По отношению к веществам, случайно попавшим в материнский организм (агенты химического производства, лекарственные препараты и т.д.), барьерные функции плаценты выражены в значительно меньшей степени.

Проницаемость плаценты непостоянна. При физиологической беременности проницаемость плацентарного барьера прогрессивно увеличивается вплоть до 32-35-й недели беременности, а затем несколько снижается. Это обусловлено особенностями строения плаценты в различные сроки беременности, а также потребностями плода в тех или иных химических соединениях.

Офаниченные барьерные функции плаценты в отношении химических веществ, случайно попавших в организм матери, проявляются в том, что через плаценту сравнительно легко переходят токсичные продукты химического производства, большинство лекарственных препаратов, никотин, алкоголь, пестициды, возбудители инфекций и т.д. Это создает реальную опасность для неблагоприятного действия этих агентов на эмбрион и плод.

Барьерные функции плаценты наиболее полно проявляются только в физиологических условиях, т.е. при неосложненном течении беременности. Под воздействием патогенных факторов (микроорганизмы и их токсины, сенсибилизация организма матери, действие алкоголя, никотина, наркотиков) барьерная функция плаценты нарушается, и она становится проницаемой даже для таких веществ, которые в обычных физиологических условиях через нее переходят в ограниченном количестве.

Ред. Г. Савельева

"Какие функции выполняет плацента" - статья из раздела

Плацента обеспечивает нормальное дыхание, питание плода и выведение продуктов распада формирование плаценты. Она заменяет ребенку во время беременности функции легких, органов пищеварения, почек, кожи и т. д.

Формирование и развитие плаценты во время беременности

Выглядит плацента как круглая, толстая и мягкая «лепешка». На момент родов диаметр плаценты достигает 15–18 см, а ее толщина 2–3 см, при этом масса составляет 500–600 г. Как уже отмечалось, плацента имеет две поверхности:

  • материнскую, прилегающую к стенке матки,
  • и плодовую, обращенную внутрь в полость амниона.

Плодовая поверхность покрыта гладкой водной оболочкой, под которой проходят к хориону сосуды, идущие в радиальном направлении от места прикрепления пуповины к периферии плаценты.

В свою очередь материнская поверхность плаценты серовато-красного цвета, разделена более или менее глубокими бороздками на дольки, состоящие из множества ветвящихся ворсин, в которых располагаются кровеносные сосуды – котиледоны. Наличие сероватого оттенка связано с цветом децидуальной оболочки, покрывающей разросшиеся ворсины. Как правило, прикрепление плаценты отмечается в верхнем отделе матки на передней или задней стенке, очень редко встречается прикрепление в области дна или трубных углов.

Роль ворсин при формировании плаценты во время беременности

Формирование плаценты осуществляется из базальной части децидуальной оболочки и сильно разросшихся ворсин ветвистого хориона. Основная масса плаценты представлена сильно ветвящимися ворсинами хориона. Сосуды, проходящие в крупных ворсинах, делятся по мере разветвления ворсин. В конечных ворсинах проходят только петли капилляров. Количество ворсин увеличивается с ростом срока беременности. Формирование плаценты обеспечивает увеличение пограничной поверхности соприкосновения между током крови матери и плода. Эта пограничная поверхность, определяющая состояние газообмена, питания и выведения продуктов обмена плода, в зрелой плаценте значительно превышает поверхность тела взрослого человека. Общая площадь поверхности всех ворсин в зрелой плаценте составляет 6–10 м². Длина же ворсин, сложенных продольно,– более 50 км.

В ходе развития плаценты некоторые ворсины срастаются с материнскими тканями и являются закрепляющими (якорными). Большинство же ворсин располагаются свободно, они погружены непосредственно в кровь, циркулирующую в межворсинчатом пространстве. По строению ворсины представлены слоем протоплазматической массы (наружный покров), не имеющей клеточных оболочек. В ней свободно располагаются ядра, и называется этот слой синцитием (плазмодиотрофобласт). На поверхности синцития имеются микроскопические ворсины, определяемые только электронным микроскопом, которые еще больше увеличивают резорбционные возможности ворсин. Нужно отметить, что работа синцития огромна, он перерабатывает большое количество питательных веществ, поступающих к плоду от организма матери. Как уже отмечалось, синцитий большую роль играет в процессе имплантации плодного яйца благодаря наличию в нем различного рода ферментов.

Следующий слой ворсин представлен хориональным эпителием – цитотрофобластом. В первые месяцы беременности цитотрофобласт образует сплошной слой, а в дальнейшем отдельные его клетки постепенно исчезают. Поэтому ворсины почти полностью утрачивают цитотрофобласт во второй половине беременности. Помимо участия в обмене веществ, в цитотрофобласте происходят сложные ферментативные процессы и синтез гормонов, а также он является ростковым слоем для синцития. В самом центре ворсин проходят капилляры.

Функции плаценты во время беременности

Материнская часть плаценты представлена утолщенной частью децидуальной оболочки, располагающейся под разросшимися ворсинами хориона (плодовая часть плаценты). В этой части плаценты образуются углубления, в которые и погружены ворсины и где циркулирует омывающая их материнская кровь. Между этими углублениями имеются выступы (перегородки) децидуальной ткани, к которым прикрепляются якорные ворсины. В структуре этих перегородок имеются артерии, приносящие материнскую кровь в межворсинчатые пространства.

Возможность излития крови из этих артерий обеспечивается ферментативной деятельностью синцития трофобласта. В свою очередь венозная кровь из межворсинчатых пространств отводится через краевой синус плаценты и вены матки. Так как циркуляция крови в межворсинчатых пространствах медленная, питательные вещества могут усвоиться в полной мере. Следует отметить, что хорошему усвоению способствует также несвертываемость крови, омывающей ворсины. Она не смешивается с кровью плода, протекающей внутри сосудов ворсин. Помимо потребления питательных веществ и кислорода, в кровь матери поступают продукты обмена и углекислый газ плода, подлежащие удалению из организма плода.

Таким образом, плацента – незаменимый орган для выполнения функции дыхания, выделения продуктов обмена и поступления питательных веществ для плода.

Хочется отметить, что процессы обмена протекают в плаценте более интенсивно на ранних стадиях ее развития. Это видно по значительному содержанию в синцитии и цитотрофобласте

  • нуклеиновых кислот,
  • митохондрий,
  • лизосом и т. д.,
  • а также ферментов, осуществляющих окислительно-восстановительные процессы, расщепляющих белки, углеводы, липиды.

Внутрисекреторные функции плаценты

Помимо всего прочего, важна роль плаценты во внутрисекреторной функции. В цитотрофобласте синтезируется хорионический гонадотропин, количество которого особенно возрастает на ранних сроках беременности. Продукция гонадотропина продолжается несколько месяцев. Совместно с плацентарным пролактином хорионический гонадотропин способствует развитию и функциональной активности желтого тела беременности. Также в плаценте происходит синтез

  • хорионического соматотропина (соматотропный плацентарный лактоген),
  • эстрогенных гормонов, преимущественно эстриола.

Весь процесс синтеза осуществляется в синцитии и трофобласте. Во время беременности гормоны синтезируются неравномерно, к примеру синтез эстрогенов резко возрастает во второй половине беременности. В конце беременности в плаценте отмечается образование фракций (эстриола, эстрона), усиливающих возбудимость и сократительную деятельность матки. В свою очередь, начиная с третьего, четвертого месяца беременности, в плаценте образуется прогестерон. С этим процессом совпадает прекращение внутрисекреторной функции желтого тела беременности, и функции этой железы (синтез прогестерона) начинает выполнять плацента. Существуют данные о выделении из ткани плаценты кортизола, адренокортикотропного, тиреотропного и других гормонов, однако синтез их именно в плаценте не доказан. По тем же данным, в ткани плаценты обнаружены окситоцин, вазопрессин, гистамин, ацетилхолин, простагландины.

Также выявлено, что в плаценте содержатся групповые специфические антигены, причем антигены, содержащиеся в амнионе и хорионе, соответствуют группе крови плода. Плацента содержит и факторы свертывания крови и фибринолиза (тромбопластин, фибринолизины, кальций и т. д.), что способствует правильной циркуляции крови в межворсинчатом пространстве и остановке кровотечения после родов (тромбопластин освобождается из плаценты).

Проницаемость плаценты и ее функция в развитии беременности

Отдельно остановимся на проницаемости плаценты для различного рода веществ. Отмечена способность хорионального эпителия ворсин пропускать к плоду одни вещества и не пропускать другие. К примеру, трипановый синий, конго красный, кураре и многие другие вещества к плоду не проходят. Также есть сведения, что, к примеру, бром переходит от матери к плоду быстрее, чем в обратном направлении, фтор также поступает плоду, но обратный переход его через плаценту тормозится.

Барьерные функции плаценты во время беременности

В результате таких данных сделан вывод о наличии барьерных функций плаценты, т. е. способности задерживать переход к плоду веществ, не требующихся или вредных для организма плода. По этому поводу существует мнение, что плацента тормозит переход и микробов, в том числе патогенных. Тем не менее к плоду все-таки переходят некоторые возбудители инфекционных заболеваний, вирусы, простейшие (токсоплазма), патогенная и непатогенная кокковая флора и другие микроорганизмы. Переходу микробов обычно способствуют изменения в плаценте, возникающие во время болезни беременной.

Тем не менее барьерная функция плаценты ограничена определенными пределами. Установлено, что через плаценту в кровь плода проникают

  • эфир,
  • закись азота и другие газы,
  • алкоголь
  • , морфин,
  • атропин,
  • пантопон и другие наркотические вещества,
  • хлоралгидрат,
  • ртуть,
  • мышьяк,
  • никотин,
  • сульфаниламиды,
  • антибиотики,
  • барбитураты,
  • салицилаты,
  • сердечные гликозиды,
  • хинин и т. д.

Большинство из перечня этих веществ оказывают тяжелое токсическое или вредное действие. Доказана возможность перехода эритроцитов и лейкоцитов плода в кровь матери, но только в ограниченном количестве. При назначении лекарственных препаратов обязательно нужно помнить, что в организм плода проникают почти все фармакологические препараты, назначаемые беременным, а также средства, обезболивающие роды.

Функция системы "мать – плацента – плод при формировании и течении беременности

Cразу же после зачатия система возникает "мать – плацента – плод". Направлена она "мать – плацента – плод" на поддержание оптимальных условий развития эмбриона, а затем плода в организме и связана со сложными и взаимообусловливающими адаптационными процессами. Впервые учение о функциональных системах было предложено П. К. Анохиным в 30–60-х гг. XX в. Тогда он определил функциональную систему как динамическую, саморегулирующуюся организацию, избирательно объединяющую структуры и процессы на основе нервных и гуморальных механизмов регуляции для достижения важных для системы и организма в целом приспособительных результатов. Функциональная система имеет разветвленный аппарат, обеспечивающий за счет присущих ей закономерностей эффект как гомеостаза, так и саморегуляции.

С физиологической точки зрения само понятие «функциональная система» несет в себе не только простое сосуществование отдельных ее элементов, но и их взаиморегулирующее и взаимозависимое содействие.

Нормальное развитие центральной нервной системы плода невозможно без наличия афферентной импульсации от сердца, являющегося первым работающим органом у плода. А уже после девятой недели, когда появляются двигательные реакции плода, поступление импульсации происходит и с рецепторов скелетных мышц. В свою очередь после начала дыхательных движений (двенадцатая неделя беременности) начинается импульсация в дыхательные центры плода.

Патология недоразвития мышечной системы плода происходит из-за недостатка двигательной активности плода, что в свою очередь сочетается с недостаточной импульсацией в центральную нервную систему. Все это приводит к замедлению развития центров, регулирующих деятельность мышц (в том числе дыхательных), и нарушению многих других функций развивающегося плода. Все системы жизнеобеспечения, необходимые после рождения плода, формируются до рождения, они также проходят специальные проверки на готовность и тренировки.

Особенности системы "мать – плацента – плод" во время беременности

Исходя из этого функциональная система "мать – плацента – плод" имеет ряд особенностей:

срок существования данной функциональной системы ограничен сроком беременности, т. е. непосредственно временем развития эмбриона и плода до момента рождения;

данная функциональная система может сформироваться только в организме женщины со всеми присущими ему физиологическими особенностями;

при формировании и становлении функциональной системы мать – плацента – плод задействованы как нормальные с точки зрения анатомии и физиологии процессы, так и патологические, которые также необходимы для прогрессирования гестационного процесса и развития плода (инвазивный рост трофобласта, гестационные изменения спиральных артерий и др.);

во время становления и существования данной функциональной системы имеют место определенные «критические периоды», определяющие либо само дальнейшее ее существование, либо существенные отклонения в нормальном развитии плода;

конечной целью функциональной системы мать – плацента – плод является не только рождение живого и жизнеспособного ребенка, но и оптимальная адаптация организма матери к гестационному процессу (т. е. физиологическому течению беременности).

Формирование потоков крови в плаценте при беременности

Как уже отмечалось, все процессы, связанные с функционированием системы мать – плацента – плод, направлены не только на нормальное формирование всех систем плода, но и на полноценную адаптацию организма матери. Следует отметить, что вся последовательность формирования и дальнейшего функционирования этой системы генетически запрограммирована. Например, получение кислорода извне обеспечивается гемодинамической функциональной системой "мать – плацента – плод" , являющейся подсистемой общей функциональной системы мать – плод. Ее развитие происходит первой в самом раннем периоде онтогенеза. В ней одновременно формируется фетоплацентарное и маточно-плацентарное кровообращение.

Можно выделить два потока крови в плаценте:

поток материнской крови, поступающей посредством гемодинамики крови в организме матери;

поток крови плода, зависящий от реакций его сердечно-сосудистой системы.

Во время беременности поток поступающей к плаценте крови неоднороден, наибольший приток крови отмечается к концу беременности. Основным моментом обеспечения кровью плаценты являются сокращения миометрия. Поэтому при патологических состояниях (повышение тонуса миометрия, угроза самопроизвольного выкидыша или преждевременных родов) происходит уменьшение поступления крови к плаценте, а, следовательно, и к плоду, что может вызвать нарушения со стороны нормального развития плода.

Эндокринная функция системы "мать-плацента-плод" во время беременности

Определенное и достаточно сложное развитие имеет эндокринная функция системы мать – плацента – плод. Рассмотреть весь этот процесс возможно на примере синтеза эстриола. Изначально все ферментные системы, необходимые для продукции эстрогенов, распределены между плодом (его надпочечниками и печенью), плацентой и надпочечниками матери.

Первый этап биосинтеза эстрогенов происходит во время беременности в плаценте путем гидроксилирования молекулы холестерина. Образовавшийся прегненолон из плаценты поступает в надпочечники плода, где происходит его трансформация в дегидроэпиандростерон (ДЭА). ДЭА поступает в последующем с венозной кровью обратно в плаценту, где под влиянием определенных ферментных систем подвергается ароматизации и превращается в эстрон и эстрадиол. В дальнейшем еще более сложный гормональный обмен между организмом матери и плода превращает эти соединения в эстриол (основной эстроген фетоплацентарного комплекса).

Отделение плаценты и ее функция во время беременности

В последовый период родов происходят отделение плаценты и оболочек от стенок матки и рождение последа. Отделение последа происходит в результате 2–3 схваток и потуг женщины в течение 10 мин. Непосредственная продолжительность этого периода не должна превышать 30 мин.

Отделение плаценты происходит вследствие сокращения матки, в том числе и плацентарной площадки (место прикрепления плаценты). Так как плацента не обладает способностью сокращаться, она отделяется от плацентарной площадки. Отрыв плаценты приводит к образованию ретроплацентарной гематомы (так как нарушается целостность сосудов), представляющей собой скопление крови между плацентой и стенкой матки.

Ретроплацентарная гематома и продолжающиеся сокращения матки приводят к полному отслоению последа. Отделившийся послед силой потуг рождается. Плацента выходит из половых путей амниотической оболочкой наружу. Описанный выше путь отслоения плаценты носит название «центральный путь» (впервые описан Шульцем).

Однако при последовом периоде родов может быть и периферический путь отслоения плаценты, когда отделение начинается не с центра, а с периферии. Ретроплацентарная гематома при этом не образуется, а кровь, стекая вниз, отслаивает оболочки. Плюс ко всему отделению плаценты способствует ее собственная масса. Послед рождается вперед нижним краем плаценты (материнской поверхностью), а амниотическая оболочка оказывается внутри. Этот процесс называется отделением плаценты по Дункану.